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The motion of two gas bubbles in response to an oscillatory disturbance in the ambient 
pressure is studied. It is shown that the relative motion of bubbles of unequal size 
depends on the frequency of the disturbance. If this frequency is between the two 
natural frequencies for volume oscillations of the individual bubbles, the two bubbles 
are seen to move away from each other; otherwise attractive forces prevail. Bubbles of 
equal size can only attract each other, irrespective of the oscillation frequency. When 
the Bond number, Bo (based on the average acceleration) lies above a critical region, 
spherical-cap shapes appear with deformation confined on the side of the bubbles 
facing away from the direction of acceleration. For Bo below the critical region shape 
oscillations spanning the entire bubble surface take place, as a result of subharmonic 
resonance. The presence of the oscillatory acoustic field adds one more frequency to the 
system and increases the possibilities for resonance. However, only subharmonic 
resonance is observed because it occurs on a faster timescale, O(l/s), where E is the 
disturbance amplitude. Furthermore, among the different possible periodic variations 
of the volume of each bubble, the one with the smaller period determines which 
Legendre mode will be excited through subharmonic resonance. Spherical-cap shapes 
also occur on a timescale O( 1 /e). When the bubbles are driven below resonance and for 
quite large amplitudes of the acoustic pressure, E % 0.8, a subharmonic signal at half 
the natural frequency of volume oscillations is obtained. This signal is primarily 
associated with the zeroth mode and corresponds to volume expansion followed by 
rapid collapse of the bubbles, a behaviour well documented in acoustic cavitation 
experiments. 

1. Introduction 
It is very well documented in the field of acoustic cavitation that pressure changes 

determine the dynamic, and eventually destructive, behaviour of bubbles in high-speed 
flows. In order to study the effect of pressure, it is common practice in experimental 
studies of cavitation to set the host fluid along with the trapped bubbles in pulsation 
using a sound field. In the pioneering work of Kornfeld & Suvorov (1944), a vibrating 
cylinder was used for the generation of air bubbles in water which were then observed 
as they oscillated and in some cases translated in the fluid at a high speed. The 
accelerating motion of the bubbles was attributed by the above investigators to the 
well-known 'Bjerknes effect'. According to Bjerknes (1906, 1909) two bubbles 
oscillating in a sound field will attract or repel each other depending on whether they 
oscillate in or out of phase, respectively. In the same study it was observed that 
increasing the amplitude of vibrations intensifies the accelerating motion of the bubbles 
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until at some point they are seen to move violently in a ‘zig-zag’ pattern. These bubbles 
have been called ‘dancing bubbles’. For relatively small amplitudes however, the 
bubbles were observed to perform complicated vibrations accompanied by non- 
spherical shapes, and eventually to coalesce or disintegrate. 

The wealth of hydrodynamic effects involved in acoustic cavitation attracted several 
investigators to the field. A brief summary of the literature related to the Bjerknes effect 
is given in Part 1 of this work (Pelekasis & Tsamopoulos 1993), where the effect of a 
step change in the static pressure is examined. Only the additional literature relevant 
to the present problem will be discussed below. Eller & Crum (1970) studied the 
possibility of shape oscillations for a single bubble already undergoing radial 
oscillations. The bubble was trapped in a standing wave which provided the pressure 
gradient needed for balancing gravity. The motion was induced by an acoustic pressure 
field which oscillated in time, and was imposed on top of the original standing wave. 
They conducted an asymptotic analysis, valid only for small values of the amplitude 
of the acoustic sound wave, to obtain the amplitude thresholds for the onset of shape 
oscillations with frequency one half of the driving frequency, of the acoustic pressure. 
Comparing the calculated values with experimentally obtained results for the onset of 
the erratic motion of bubbles, they concluded that the latter effect is caused by the 
parametric excitation of shape oscillations. This mechanism was originally proposed 
by Benjamin & Strasberg (1958). 

More recently Hall & Seminara (1980) carried out a more systematic nonlinear 
stability analysis of the same problem posed by Eller & Crum. Under the assumption 
of axisymmetric and potential flow, the basic oscillatory motion in the radial direction 
was found to bifurcate into a non-spherosymmetric motion. This motion was periodic 
on the fast timescale imposed by the acoustic excitation and its amplitude was slowly 
modulated on the timescale associated with the linear growth rate of specific 
axisymmetric disturbances. Perturbation theory gave rise to an equation of the 
Mathieu type (Bender & Orszag 1978), which was solved for the linear growth rates 
and the thresholds for stability of non-spherical shape oscillations. The effect of the 
natural frequency for radial oscillations was not examined. However, it is shown in the 
present study that it is primarily this frequency that interacts with the frequencies of 
the higher modes, although the scaling arguments introduced by Hall & Seminara are 
still valid. 

The coupling of the effects of bubble acceleration and shape oscillations is examined 
in Part 1. There, a step change in pressure generates ‘Bjerknes forces’ between the two 
bubbles, which induce an accelerating motion whose intensity is measured by the Bond 
number, Bo = ( ( g * )  R*2p)/a; where ( g * )  is the average acceleration of each centre of 
mass, R* is the bubble radius, u is the interfacial tension and p is the fluid density. For 
bubbles of equal size Bo is identical to the average dimensionless acceleration. For Bo 
sufficiently large, acceleration overwhelms surface tension to produce spherical-cap 
shapes that are deformed only on the side facing away from the direction of 
acceleration. Spherical-cap shapes were first observed and explained in steadily rising 
bubbles of sufficiently large volume by Davies & Taylor (1950). When Bo is below a 
critical range of values, bubbles with globally deformed shapes arise. Such shapes were 
repeatedly observed by Kornfeld & Suvorov in their acoustic cavitation experiments. 
They are dominated by Legendre modes, oscillating at a frequency half that of volume 
oscillations. This is a result of subharmonic excitation of certain Legendre components 
of the shape by the pulsating motion of the two bubbles. Both effects occur when time 
becomes O(l/e), where B is a measure of the amplitude of the change in the static 
pressure. The above scaling for time was predicted by Hall & Seminara for 
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subharmonic resonance and was also established numerically in Part 1 for spherical- 
cap shapes. 

Bubble acceleration and shape oscillations are secondary effects, since any 
disturbance in the far-field pressure primarily induces radial pulsations of the bubbles. 
In fact, early research in cavitation was targeted towards understanding the dynamics 
of a single bubble undergoing radial oscillations. An extensive account of the early 
literature in the field is given by Plesset & Prosperetti (1977) in a review paper. Most 
notably Flynn (1964) carried out a number of numerical simulations of the radial 
oscillations of a single bubble set in motion by an acoustic sound field. His results 
demonstrated the complexity of possible responses. In particular he was able to capture 
the explosive behaviour of the bubble during cavitation, consisting of volume growth 
followed by violent collapse to small values of the radius. Lauterborn (1976) and 
Lauterborn & Cramer (1981) conducted an extensive numerical investigation of the 
same problem. They were thus able to recover a very complicated pattern of resonances 
between the forcing frequency, wf, and the natural frequency of the bubble for linear 
oscillations, wo, which dominate the steady-state response for sufficiently large 
amplitudes of the acoustic pressure variation. 

In the same context as the above studies, Esche (1952) reported a subharmonic 
component, i.e. a signal at half the forcing frequency, in the spectrum of a liquid 
undergoing acoustic cavitation. This experimental result gave rise to the hypothesis 
that subharmonically oscillating bubbles evolve into transient cavities that eventually 
collapse and breakup and thus produce the severe effects associated with acoustic 
cavitation. Later Neppiras (1969) provided experimental evidence that a subharmonic 
signal may be produced by forced oscillations of bubbles whose radial resonance 
frequencies are submultiples of the forcing frequency, wT Furthermore, in certain cases 
he observed that when the concentration of bubbles with sizes corresponding to the 
frequencies prescribed above was low, the subharmonic signal was very weak. 
However, his results were not conclusive and he had to conjecture the existence of some 
additional mechanism unrelated to resonant bubbles, that contributes to the strong 
subharmonic signals. 

In the present study the motion of two initially static and spherical bubbles induced 
by an acoustic field is examined. When gravitational effects are small there is no need 
for a standing wave to trap the bubbles and the motion can be simply induced by 
perturbing the static pressure at infinity, 4. The perturbation is periodic in time with 
frequency wr, and amplitude ~ 4 .  In $2 a brief account is given of the specific features 
of the problem treated here, whereas the details of the problem formulation and 
numerical solution are given in Part 1. 

The presence of the forcing frequency, wf, introduces one additional important 
timescale into the problem, besides the ones associated with the natural frequency of 
volume oscillations for each bubble. The latter alone govern the primary oscillatory 
motion in the case of a step change in pressure. Therefore, the possibilities for 
resonance and the number of competing effects increase. Moreover, in the case of 
bubbles with unequal size, wf induces oscillations that result in attraction or repulsion 
depending on the specific phase difference. In $ 3  a summary of the results obtained in 
Part 1 that are relevant to the present study, is given. Next, in 44 the long-time 
behaviour of two equal bubbles is presented in response to an oscillatory pressure field 
and the dominant effects are identified as a function of the problem parameters. In 
several instances the response can be classified as in cases with a step change in 
pressure. For large values of the amplitude, E ,  however, radial oscillations become the 
dominant effect and a signal at half the natural frequency is obtained irrespective of the 
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magnitude of the forcing frequency. The response of two unequal bubbles to a step 
change in pressure is presented in $5 .  The behaviour of each bubble is determined by 
its individual Bond number. When a periodically varying pressure field is applied the 
two bubbles are seen to repel or attract each other depending on whether the forcing 
frequency is within the interval defined by their natural frequencies, or outside it, $6. 
Finally, in $7 the results presented here are discussed in the context of previous 
investigations and future directions are suggested. 

2. Problem statement 
The flow field examined here is similar to that in Part 1, with the exception of the 

initial disturbance. More specifically, the motion of two inertialess bubbles is studied. 
Their shape is initially spherical with dimensionless radii R, = 1 and R, = R < I ,  for 
the left and right bubbles, respectively. The pressure inside the gas bubbles changes 
adiabatically and instantaneously follows the dynamics of the liquid at the gas-liquid 
interface. The centres of mass of each bubble are initially located at a dimensionless 
distance apart D > 1 + R. Lengths are made dimensionless through the radius of the 
left bubble, whereas surface tension and liquid density are used for making pressure, 
P ,  velocity potential, @, and time, t, dimensionless. The liquid surrounding the two 
cavities is taken to be inviscid and the flow in it incompressible and irrotational. 

The two gas-liquid interfaces are treated as free surfaces and are calculated along 
with the velocity potential and normal velocity at both interfaces in every time step. To 
this end, a hybridization of the boundary element method and the finite element 
method (or collocation) is used as discussed in Pelekasis, Tsamopoulos & Manolis 
(1991, 1992). Gravitational effects are neglected. When t < 0 the static pressure 
everywhere in the liquid, P,, is uniform. At time, t = 0, an acoustic pressure field is 
applied at infinity, where the total dimensionless pressure is prescribed as 

P, = P,(1 + ~ c o s w ~  t) ,  t 2 0, (2.1) 
with e being the measure of the amplitude of the disturbance and wf the forcing 
frequency. Summarizing, the parameters involved in the analysis are the ratio of the 
two radii R, the initial distance between the two centres of mass D, the static pressure 
P,, and the amplitude and frequency of the acoustic sound field, e and w f .  

The problem formulation through the Eulerian or the mixed Lagrangian-Eulerian 
approach is described in detail in Part 1. Owing to the oscillatory pressure change at 
infinity the total energy of the system, as given by (2.27) in Part 1, does not remain 
constant. Instead, it oscillates in time with the period of the acoustic pressure field. It 
can be shown that the variation of the total energy, E, with time is prescribed by the 
following relation : 

(2.2) 
where and & denote the instantaneous volumes of the left and right bubbles, 
respectively. The above equation can be obtained by using 

dE/dt = - 2wf eP,( V, + V,) sin wf t ,  

and then proceeding with integration by parts and employing the kinematic and 
dynamic boundary conditions. The amplitude of the energy oscillations does not 
necessarily remain constant and as wf approaches the natural frequency for volume 
oscillations, wo, it is seen to increase. Any slight deviation from (2.2) can serve as an 
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accuracy check for the computations. This becomes more convenient when (2.2) is 
integrated as follows : 

E(t) = E(t = 0)- 2wfsP,(V,+ V,)sinqtdt. s: 
The numerical solution of the system of equations is also described in Part 1 for both 

the Eulerian and mixed formulation. However, the mixed formulation is used 
throughout the present study, in spite of its lower accuracy at early times (see Part 1), 
since it can capture the more complicated shapes that arise at later times. For most 
computed cases the basic timescale is that of the natural volume oscillations. In general 
the step for time integration is selected in such a way as to allow for at least 100 time 
steps per period of the natural volume oscillations. 

When P, = 666.66, R = 1, D = 4 and s = 0.2 the period of natural volume 
oscillations was found in Part 1 to be 0.082. In this case, a time step of At = 0.0005 
allows for 164 time steps per period. This time step is small enough to be used even in 
the few cases where the forcing frequency is larger than the natural frequency of 
volume oscillations. For the same reason a time step of 0.002 is used when P, = 50. 
Normally 41 nodal points are used for each interface. In several cases and towards the 
late stages of motion, shape deformations become very large and evolve on a very small 
timescale. In order to accurately capture the motion under such conditions the time 
step is halved and the number of nodal points is doubled to 8 1. Finally the trapezoidal 
rule is used for integrating (2.4). For all the cases examined the two sides of (2.4) are 
in agreement to within at least the first two significant digits. 

3. General characteristics 
As already pointed out, one very interesting feature of the physical system studied 

here is that it allows for the coupling of several very important effects in the area of 
acoustic cavitation. Namely, the primary effect of radial oscillations can, under certain 
conditions, lead to non-spherical shape oscillations through resonance with specific 
Legendre modes (Hall & Seminara 1980). In addition, the nonlinear interaction 
between the two bubbles induces an accelerating motion of their two centres of mass 
along their common axis of symmetry. If this induced acceleration is large enough 
spherical-cap shapes arise. 

In the following, the modes corresponding to natural volume or radial oscillations 
of each bubble (zeroth mode) will be referred to as breathing modes. The rest of the 
eigenmodes and bubble shapes can be represented by the Legendre modes obtained 
through decomposition of the shape in a spherical coordinate system based on the 
instantaneous centre of mass of each bubble. The variation with time of the resulting 
coefficients, ci, will be plotted occasionally in order to demonstrate different types of 
mode coupling. 

For a step change in pressure at infinity, the frequency of volume oscillations is 
approximately that predicted by linear theory and is called the natural frequency; see 
Part 1 for its calculation. Furthermore, it varies with I$ for large enough values of P, 
and D,  and with R;: for relatively large values of R, and D .  For bubbles of equal size 
there are two natural frequencies, corresponding to symmetric and antisymmetric 
oscillations, respectively. The frequency of the symmetric mode is found to decrease 
with decreasing distance D, whereas the opposite is true for the antisymmetric mode. 
On the other hand the eigenfrequencies of all the higher modes depend very weakly on 
both D and P,, but they also vary as R$ with the bubble radius. Even when the two 
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bubbles are not equal in size two sets of eigenfrequencies exist, for each set of values 
of D,  R and P,, each one affecting primarily one of the two bubbles. The corresponding 
eigenvectors are dominated by a specific Legendre mode; see tables 1 and 2 and the 
linear analysis in Part 1 for more details. In particular, as was shown in Part 1, the 
numerical values of the eigenfrequencies of all the modes, except for the zeroth mode, 
can be well approximated by the well-known formula 

which becomes exact as D+ 03 (isolated bubbles), see Lamb (1932). These values are 
repeatedly used in the next sections. In the same limit, D+ 03, the frequency of the 
radial oscillation for each bubble is given by 

2n: - 2n: q,* = - - 
w ~ , ~  [6(P,+ 1/R) y/R2-2/R3]i’ 

A systematic analysis of several new possibilities, when wf + 0, follows. 

4. Bubbles of equal size in an oscillatory pressure field 
The forcing frequency can be chosen in such a way as to induce subharmonic or 

harmonic resonance with the Legendre modes describing the shape of the bubbles. At 
the same time, there is always the possibility of resonance between the breathing mode 
of the two bubbles and the Legendre modes. In fact, it is safe to assume that given any 
periodic motion performed by the volume of either one of the two bubbles, there will 
always be one or more modes in the linear spectrum that will be in harmonic or 
subharmonic resonance with the volume oscillations. Alternatively, in a suspension of 
bubbles there will always exist some whose size will permit resonance. 

When the bubbles are of unequal size, R =l 1, the two sets of eigenvalues, each 
corresponding to one of the two bubbles, are equally important in the description 
of the motion. In order to avoid the complications introduced by the additional 
timescales we choose to study bubbles of equal size first. Consequently, when the 
bubbles are initially at equilibrium in the host fluid and a spatially uniform disturbance 
in pressure is applied, only the in-phase mode may be excited in both bubbles. This 
reduces the number of timescales involved in the motion by one set and simplifies the 
study on the coupling between the effects of resonance and acceleration for varying 
parameter values. 

4.1. Bubbles at distance D = 8 and initial pressure P,  = 666.66 
It was found in Part 1 (figure 10) that when E = 0.2 shape oscillations arise on the outer 
surface of both bubbles at t x 1.4, as a result of subharmonic resonance between the 
breathing mode and certain high modes, P,, P9 and Plo. When E increases to 0.4 (figure 
12 in Part 1) the stronger translation of both bubbles confines deformation to the side 
of the bubbles away from the direction of acceleration while the rest of the shape 
resembles that of a sphere. Both effects occur when time becomes 0(1/e) and the 
transition between these two different behaviours is determined by the average 
acceleration, ( g ) ,  which is proportional to 2. In particular, spherical-cap shapes 
appear when ( g )  exceeds a critical range of values. For example, when P, = 666.66, i.e. 
P t  = 1 atm for bubbles with R: = 1 mm in water, this critical range was found to be 
1.0 < Bo < 1.5. This was the recurring theme in Part 1 and it is seen in the following 
that it persists in the present study with the exception of very large amplitudes. 
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FIGURE 1. Variation with time of selected Legendre coefficients: (a) co, (b) --, c,; . . ., c9, of the shape 
of the left bubble; R = 1, D = 8, P, = 666.66, E = 0.2 and w, = 3.5. The right bubble behaves in the 
same way owing to symmetry. 

Turning now to a disturbance in pressure that oscillates with wf = 3.5 and E = 0.2 it 
is found that shape oscillations occur a little later, at time t M 1.6. Until then, all modes 
shown in figure 1 oscillate with the breathing-mode frequency, which is approximately 
w,, = 70. This is detectable in the second mode which also grows slowly, whereas 
it cannot be seen as clearly in the ninth mode owing to the scale used in plotting 
their amplitudes. The external disturbance has not even completed a period 
(T, = 2 4 w f  = 1.8) when calculations break down at t M 1.7 due to exponential growth 
of all the modes. Therefore, the latter effect is caused by resonance with the zeroth 
mode and not the forcing. Indeed, at t = 1.6 the coefficients P,, P, and PI, become 
dominant in the bubble shape. This is also evident from the number of lumps appearing 
on the outer surface of the two bubbles. These shapes are given in Pelekasis (1991) and 
they resemble those in figure 10 of Part 1 except that the overall amplitude of 
deformation is smaller. The acceleration is averaged over each period of the breathing 
mode and it is found that for both bubbles it follows the oscillations of the pressure 
field, tabie 1. At the same time the amplitude of volume oscillations is changing with 
time and is modulated by the forcing frequency (compare figure 1 (a) here with figure 
11 (a) in Part 1). The maximum, minimum and mean values of the average acceleration 
are 0.69, 0.26 and 0.47 respectively. The latter is less than the average acceleration 
induced when wf = 0 and all are below the critical range of Bo. 

Equations (3.1) and (3.2) show that the approximate eigenfrequencies of the modes 
4-4, are about one half the frequency of wo. The presence of a second bubble and of 
nonlinearities leads to subharmonic resonance with at least three Legendre modes as 
opposed to just one that could have been anticipated theoretically. The delay in the 
appearance of subharmonic resonance, as compared with the case of a step change in 
pressure, is because, on average, less energy is now available in the system. It should 
also be noted that the frequency of the acoustic pressure is very close to the linear 
frequency of Pz. However, the slow variation of P, cannot be attributed to its harmonic 
resonance with the forcing, but rather to its forced oscillation with its eigenfrequency. 
This should be expected since subharmonic resonance becomes evident when 
t = 0(1/~), whereas harmonic resonance occurs when t = 0(1/e2) (Hall & Seminara 
1980). Increasing wf to 7 again induces shape oscillations dominated by P,, P, and PI, 
due to subharmonic resonance with the zeroth mode. It is also worth noting that even 

17-2 
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6Jf = 3.5 wr = 34.5 

Period Time interval (g) Time interval (g) 
1 0.0214). 1 0.46 0.0194.134 1.94 
2 0.14.179 0.47 0.134-0.21 0.66 
3 0.1794.26 0.41 0.21-0.324 3.07 
4 0.26-0.343 0.39 0.3240.4 1.16 
5 0.3434.43 0.33 0.40.512 5.04 
6 0.434.521 0.27 0.5124.589 1.62 
7 0.5214.616 0.26 0.589-0.698 8.27 
8 0.616-0.716 0.21 
9 0.7160.82 0.31 

10 0.824.926 0.37 
11 0.926-1.031 0.47 

13 1.134-1.232 0.61 
12 1.031-1.134 0.53 

14 1.232-1.325 0.67 
15 1.325-1.414 0.69 
16 1.4161.499 0.68 

TABLE 1. Variation of the average acceleration, (g), of the two centres of mass over a number of 
periods of the breathing mode; R = 1, D = 8, 6 = 0.2, P, = 666.66. The time intervals defining the 
periods correspond to zeros in the oscillations of the acceleration. 

~ 

subharmonic resonance between the increased frequency of the external oscillation and 
Pz does not have the time to evolve, although it could have been anticipated by the 
relative magnitude of their frequencies. 

Another possibility for resonance, superharmonic this time, lies in the interaction 
between the forcing pressure and the breathing mode. For this reason, the response of 
the system is computed with B set to 0.2 and wf set to 34.5, which is roughly half the 
frequency of the breathing mode, wo = 70. As a result, the amplitude of the volume 
oscillations increases very rapidly. This can be monitored through the oscillations of 
co which exhibit both frequencies, see figure 2. Consequently the acceleration of both 
bubbles increases and the shape deformation is confined to the rear side of the two 
bubbles only, although s/D is relatively small, see figure 3. Energy from the zeroth 
mode is quickly transferred to all the other modes, which grow more than in the 
previous case and before subharmonic resonance of Pg and PI, can be clearly detected; 
see Pelekasis (1991). The average acceleration again follows the oscillations of the 
acoustic field, see table 1, and towards the end of computations becomes significantly 
larger than 1.5, thus giving rise to spherical-cap shapes. 

4.2. Bubbles at initial pressure P,  = 50 
Quite often in cavitation experiments taking place in a venturi for instance, the datum 
pressure is below the atmospheric level. Then new interactions become possible. For 
example, the frequency of the breathing mode may approach the linear frequencies of 
the lower Legendre modes. When the static pressure is set to 50, i.e. P,* = 0.075 atm for 
Ra = 1 mm in water and D = 4, linear theory predicts that wo = 18.5. In this case and 
for a step change in the static pressure the critical Bo is found to be between 0.55 and 
1.2, corresponding to E = 0.4 and 0.6 respectively. This range is below the critical range 
obtained when P, = 666.66, which was l.Ckl.5, since the static pressure has been 
decreased, see Part 1. As Bo increases beyond 1.2 spherical-cap shapes appear, whereas 
for smaller values subharmonic resonance occurs between the breathing mode and the 
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FIGURE 2. Variation with time of the zeroth Legendre coefficient, c,,, of the shape of the left bubble 
when the forcing frequency is half the frequency of the breathing mode; R = 1, D = 8, P, = 666.66, 
e = 0.2 and of = 34.5. The right bubble behaves in the same way owing to symmetry. 
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FIGURE 3. Bubble shapes, obtained up to breakdown of computations with R = 1, D = 8, 
P, = 666.66, E = 0.2 and wf = 34.5, at (a) t = 0.70, (b) t = 0.74, (c) t = 0.78 and (d) t = 0.80. 

Legendre modes cq, c6 and c,. The dependence of the time at which instabilities arise 
and of the Bond number on 8 remains the same as when P, = 666.66, see Pelekasis 
(199 1). 

The response of the system when the motion is induced by an acoustic pressure field 
is presented in the following for several different values of the forcing frequency wf .  The 
evolution of the shapes of the two bubbles with time follows a distinct pattern as e 
increases for all the values of of used. As a typical example the results for wf = 6.5 and 
D = 4 are discussed next. 

This value of the forcing frequency allows for either subharmonic resonance with Pz, 
or harmonic resonance with P3. However, neither of these two effects is observed since 
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FIGURE 4. Variation with time of selected Legendre coefficients, (a) co, (b) -, c2; . . ., c4; 
--- , c4,,, of the shape of either bubble; R = 1, D = 4, P, = 50, E = 0.2 and wI = 6.5. 

they are both preceded by other effects that evolve faster. When E is 0.2 the two bubbles 
are seen to approach each other almost until coalescence. No significant deformations 
or instabilities appear even in the rear surfaces and computations proceed for a long 
time. The shape is dominated by Po, and to a lesser extent by Pz, as shown in figure 4. 
As time increases and the two bubbles approach each other, the accuracy of 
computations decreases and short-wave growth does not allow the integration to 
proceed further. This growth of & and other high modes can be postponed, for 
example, by spatial and temporal refinement as discussed in Pelekasis et al. (1992). On 
the other hand, the superposition of the breathing mode and the oscillatory motion due 
to the acoustic disturbance is obvious in the variation of c,, c, and c3. Before 
computations fail c4 and c5 oscillate with periods of 0.68 and 0.62, respectively, while 
the nonlinear period of the breathing mode is found to be 0.35 approximately. 
Therefore, the inception of subharmonic resonance is detected. However, the current 
value of e is too small for subharmonic resonance to become apparent in bubble 
shapes. The Bond number is also oscillating with too small an amplitude to produce 
any significant effect; its maximum value is 0.36. Therefore, neither spherical-cap 
shapes nor globally deformed shapes arise by the time computations fail ( t  = 4.4). 

Increasing E to 0.5 gives rise to spherical-cap shapes at t x 1.1, see Pelekasis (1991). 
Bo becomes 1 .O during the first period of volume oscillations and 1.6 during the second 
one. Thus, acceleration becomes the dominant effect, which eliminates any possibility 
for subharmonic resonance. The period of the oscillations of c4 and c, has drifted away 
from twice the period of c,, which is 0.25. A very interesting coupling of effects is 
observed when E is set to 0.6. The familiar pattern of spherical-cap shapes arises at time 
t M 0.9, figure 5 ,  in compliance with the O(l/e) timescale. Nevertheless, before 
spherical-cap shapes appear the volume of the two bubbles increases and then drops 
rapidly, while the oscillations of P,, shown in figure 6(a), exhibit a tendency for period 
doubling. Period doubling in spherosymmetric oscillations of a single bubble has been 
reported by Lauterborn (1976), and Lauterborn & Cramer (1981). Eventually the rest 
of the modes start growing as well, see Pelekasis (1991). 

This subharmonic signal is even more evident in the oscillations of P, when E = 0.8. 
Counting the peaks in the variation of P, in figure 6 (b) one finds that they occur at time 
t = 0, 0.306 and 0.668. Furthermore, a shallow minimum occurs at t = 0.354 and the 
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Time 
FIGURE 6. Variations with time of the zeroth Legendre mode, co, of the shape of either bubble; 
R = l ,  D = 4 , P , = 5 0 :  (a)-,e=0.6,w,=6.5;(b)---,s=0.8,w,=6.5;and(c) ..., e = 0 . 6 ,  
w, = 3.5. 

part of the curve between t = 0.306 and 0.354 almost forms a plateau. The rest of the 
modes do not grow significantly throughout the computation; see Pelekasis (1991). 
Comparing the variation of co as obtained with 6 = 0.6 and 0.8, one notices that the 
portion around the second minimum is gradually eliminated and tends to be replaced 
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by a continuous line connecting the first minimum and maximum. This indicates that 
period doubling is about to take place. The shapes of the two bubbles exhibit a 
significant growth in volume followed by an explosive collapse. 

The pattern for the response of the two bubbles described above is observed also for 
the following values of w f :  3.5, 5.0, 6.5 and 12. Namely, for E M 0.2, the two bubbles 
approach each other until coalescence without any significant deformation. Spherical- 
cap shapes appear for large enough values of e, and subharmonic volume oscillations 
with bubble collapse dominate as E increases even further. For example, when wf = 3.5 
and e = 0.6 the oscillations of Po shown figure 6(c)  also exhibit minima at times 
t = 0.1 19, 0.384, 0.775 and 1.339. The last interval is 0.564 and is approximately twice 
the period of the breathing mode, 0.265, found from the first interval. Period doubling 
in this lower frequency takes a little longer to arise. Again the pattern of rapid volume 
change is observed. Nonetheless, eventually spherical-cap shapes dominate. The 
evolution of the rest of the modes is given in Pelekasis (1991). When 6 is set to 0.8 
collapse of volume occurs before any significant deformation appears on the two 
interfaces. In order to examine the large-amplitude response of the two bubbles when 
they are driven above resonance, the frequency of the acoustic pressure field was set to 
wf = 30 > q, = 18.5 and its amplitude to 0.8. The severe volume oscillations observed 
above are eliminated and the familiar pattern of spherical-cap shapes dominates. It 
seems that now that the timescale associated with the forcing, Tf = 2.rc/wf, is smaller 
than the period of the breathing mode, the motion is determined by the former and the 
subharmonic signal in the volume oscillations is not present. 

It is noteworthy that when the subharmonic signal is observed in the oscillations of 
4, it is with respect to the breathing mode and not the forcing frequency. This is in 
agreement with the early calculations of Flynn (1964) for the radial motion of a single 
bubble under the influence of an acoustic pressure field. The same result was used later 
by Neppiras (1969) in explaining the subharmonic signal emitted by liquids in acoustic 
cavitation experiments. 

When the two bubbles are further apart, D = 10, and the other parameters are kept 
the same as in the previous section, the possibility for spherical-cap shapes is 
eliminated, since ( g )  decreases with D2 (Part 1) and it is calculated here to remain 
below the required threshold. Consequently, the remaining competing effects are due 
to resonance between the breathing mode or the forcing and the Legendre modes. 

Introducing an oscillatory pressure disturbance at infinity, with frequency wf = 3.5 
and amplitude e = 0.6, gives rise to five-lobed shapes as a result of subharmonic 
resonance between the breathing mode and Pa, P5 and P6. Monitoring of the evolution 
of the Legendre coefficients of the latter modes, just before computations fail, gives 
their oscillation period to be roughly double that of the breathing mode. Further 
increase of e to 0.8 causes subharmonic excitation of Po accompanied by rapid volume 
growth and collapse, figure 7. No modes higher than the third seem to be excited during 
this motion. 

Finally, it should be noted that decreasing e to 0.3 decelerates the growth of P4 and 
pS that was seen to occur through resonance with the breathing mode. At the same time 
increasing of to 7.0 allows subharmonic resonance between the acoustic field and Pz. 
Computations proceed for a long time without large deformations in shape. However, 
important information can be inferred from the variation of the Legendre coefficients. 
As can be seen from figure 8, co is participating in two periodic motions. The fast one 
is identified as the breathing mode with period 0.32, whereas the slow one is due to the 
acoustic pressure field with period 0.9. The fast motion is evident in the oscillations of 
pZ as well. Pz is also engaged in a second periodic motion which completes three periods 
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FIGURE 8. Variation with time of selected Legendre coefficients, (a) c,, (b) -, cz; . . ., c4, of the 
shape of either bubble; R = 1, D = 10, = 50, E = 0.3 and or = 7.0. 

in the time interval shown in figure 8(b).  Counting the distance between the maxima 
defining these three time intervals results in a period of approximately 1.8, indicating 
subharmonic resonance with the acoustic sound field for the first time. The amplitude 
of this periodic motion increases almost exponentially with time. At the same time 4, 
P5 and PB are growing through subharmonic resonance with the breathing mode with 
a period of approximately 0.64. Unfortunately, simultaneous growth of high modes 
deteriorates the accuracy of computations; see Pelekasis (1991). Thus, it is not possible 
to follow the motion further and verify whether one of the two subharmonic 
resonances will eventually dominate before coalescence. 

5. Motion of bubbles of unequal size due to a step change in pressure 
Before examining the more complicated response of unequal bubbles to an 

oscillatory pressure field it is instructive to examine their response to a step change in 
pressure with P, = 666.66. Since R < 1 it is anticipated that their motion and 
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FIGURE 9. (a) Volume oscillations of each bubble; (b) evolution of the centres of mass of mass of each 
bubble and the combined centre of mass of the two bubbles; (c) variation with time of the velocity 
of the left (-) and right (---) bubble, and (d )  variation with time of the acceleration of the left 
(-) and right (---) bubble. Parameter values are R = 0.8, D = 4, B = 0.3 and P, = 666.66. 

deformation will involve the two distinct sets of eigenmodes predicted by linear theory, 
see Part 1. More specifically, in the first set of modes the two bubbles oscillate with a 
frequency close to one of the eigenfrequencies of the left bubble alone ; the left bubble 
deforms, while the right one remains almost spherical. In the other set of modes it is 
the right bubble that deforms most and the frequency is similar to one of its 
eigenfrequencies in the absence of the bubble on the left. Hence, two sets of timescales 
will be involved in their combined motion, with the two eigenmodes corresponding to 
volume oscillations of the left or right bubble being dominant (zeroth modes). 

This is shown in figure 9 for two bubbles of radii ratio of R = 0.8, with D = 4, and 
for amplitude of the initial disturbance E = 0.3. The volumes of the two bubbles 
undergo large-amplitude oscillations, figure 9 (a). This primary motion induces 
attraction between the two bubbles, as can be seen by the motion of the two centres 
of mass, figure 9(b). The combined centre of mass, 2, as defined in Part 1, is not 
constant any more, but it fluctuates around its value at t = 0. The velocity and 
acceleration of the centres of mass of each bubble are shown in figure 9(c, d )  to 
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oscillate in time. It is important to note that the extrema in the velocity and 
acceleration of the translatory motion of one bubble occur at points in time dictated 
by the volume oscillations of the other one. This clearly demonstrates that acceleration 
in one bubble is induced by volume oscillations of the other one, see Part 1. 

By counting the maxima in the volume oscillations it is observed that there is no 
easily identifiable unique period. However, the time it takes for three consecutive 
maxima to appear in the volume oscillations of the left bubble and for five consecutive 
maxima to appear in the volume oscillations of the right bubble, seems to be constant 
and is found to be roughly 0.15 and 0.21, respectively. Taking the average acceleration 
over the time interval 0.21 for the left bubble and the time interval 0.15 for the right 
bubble, gives the familiar pattern of approximately constant, attractive acceleration, 
initially, with a tendency to decrease towards the later stages. The actual values for the 
average acceleration are about 1.47 and 2.8 initially, corresponding to the left and right 
bubble. The ratio of accelerations is roughly the inverse of the ratio of bubble volumes, 
which in this case is V,/ & = 1.953. Therefore, the smaller bubble is moving faster since 
it behaves as a body of less inertia compared to the larger one. Both values of 
acceleration given above are smaller than the value 4.1 obtained under the same 
conditions but when R = 1, see figure 9 in Part 1. This is attributed to the fact that the 
interaction force between the two bubbles is smaller now that they are displacing a 
smaller amount of fluid. 

This result is better understood in the context of the Kelvin impulse. More 
specifically, it was shown by Blake & Cerone (1982) that in the absence of any 
boundary at a finite distance from a number of material surfaces the sum of Kelvin 
impulses on all the surfaces is time independent. In the present study the total Kelvin 
impulse is zero initially and in view of the above theorem does not change with time. 
As a result, the two bubbles will experience a force equal in size, but acting in opposite 
directions. Consequently, the one occupying the smaller volume will acquire a larger 
acceleration. The virtual mass would be a more appropriate quantity to use instead of 
the volume; however, this would only change the average acceleration by a constant. 
Therefore the volume ratio will be approximately inversely proportional to the ratio of 
the two average accelerations. 

For bubbles of unequal size, the Bond number remains equal to the average 
dimensionless acceleration (gl) for the bubble on the left; whereas it is Bo = (g2 )  R2 
for the bubble on the right. For the case discussed above the individual Bond numbers 
are 1.47 and 1.792 for the left and right bubble, respectively. Consequently, the left 
bubble is expected to undergo shape oscillations which will eventually manifest 
themselves everywhere on the interface, whereas the right bubble is expected to give rise 
to spherical-cap shapes. Indeed, this can be seen in figure 10, where shapes are shown 
until computations break down for the reasons given in Part 1. The dominant modes 
of the bubble on the left at time 0.68 are Po and Ploy whereas the free surface on the 
right bubble deforms only at its rear side with P, being the dominant mode. 

Increasing the radii ratio, R, increases the average acceleration of the two bubbles 
and the individual values of Boy until at some point both bubbles exhibit spherical-cap 
shapes, similarly to the case with equal radii. For example, when R = 0.95 both 
bubbles behave in this way and the right one does so faster owing to its slightly larger 
Bond number. 

On the other hand decreasing R decreases Bo as well, but the bubbles are still moving 
towards each other. For the parameter values R = 0.7, D = 4, and e = 0.3 even the 
right bubble ceases to exhibit spherical-cap shapes, figure 11, and, until the 
computation fails at t = 0.64, it does not deform significantly. The left bubble evolves 
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FIGURE 10. Bubble shapes, obtained up to breakdown of computations with R = 0.8, D = 4, 
E = 0.3 and P, = 666.66, wf = 0, at (a) t = 0.54, (b) t = 0.60, (c) t = 0.64 and ( d )  t = 0.68. 
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FIGURE 11. Bubble shapes obtained up to breakdown of computations with R = 0.7, D = 4, 
E = 0.3 and P, = 666.66, uf = 0, at (a) t = 0.50, (b) t = 0.56, (c) t = 0.60 and (d )  t = 0.64. 

as before but its acceleration is much smaller. Monitoring the acceleration of the two 
bubbles as described in the previous case, we find that the average acceleration of the 
left bubble is roughly 0.7, whereas the average acceleration of the right bubble is 1.8 
(Bo = 0.882). Again the ratio of the two accelerations, (g , ) / (g2)  = 0.388, is roughly 
the inverse of the ratio of the two volumes, V,/V, = 2.915. In other words, the forces 
exerted by the fluid on the two bubbles as a result of their oscillations are 
approximately the same. 

As mentioned at the end of $ 5  in Part 1 acceleration stabilizes the side facing in its 
direction. However, when the entire interface deforms, with Bo below the critical range, 
even this side starts deforming albeit later in time and less than the other side, see figure 
10. On the other hand, when acceleration of both bubbles is further decreased, its 
stabilizing effect is not as pronounced; see shapes obtained for R = 0.7 in figure 11. 
Towards the late stages of motion the left bubble exhibits globally deformed shapes 
with nine well-defined lumps appearing even on its front side, while the right bubble 
is undergoing volume oscillations as predicted by linear theory. The mechanism that 
gives rise to such shapes is again subharmonic resonance between the breathing mode 
of the left bubble and Pg and PI,,. This is explained in Pelekasis (1991) by decomposing 
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the shape of the two bubbles in Legendre polynomials and considering their 
eigenfrequencies. 

It was shown in Part 1 that the time needed for such globally deformed shapes to 
become evident on the left bubble is O(l/e). Indeed, when computations for R = 0.7 
are repeated with a smaller value of E = 0.2 the same behaviour is observed later in 
time, t = 0.9, as opposed to t = 0.6 when E = 0.3. There is also the possibility of 
harmonic resonance between the breathing mode and one of the even higher Legendre 
modes. However, the time needed for such an effect to become apparent is 0(1/e2). 
Thus, subharmonic resonance occurs faster and does not allow for harmonic resonance 
to evolve. This pattern has been observed on several different occasions in Part 1 as well 
as the present study. 

Moreover, now that the acceleration of the left bubble is much smaller compared to 
the case with R = 0.8, a liquid jet is seen to penetrate its surface from the front. This 
occurs shortly before computations collapse and after the appearance of globally 
deformed shapes. Jet formation in accelerating bubbles in the vicinity of other surfaces 
has also been reported by Blake & Gibson (1981). They found that during interaction 
between a vapour cavity and a gas/liquid interface, a jet is formed on the bubble side 
closer to the interface, whereas it is formed on the bubble side further away from a 
solid/liquid interface. In both cases the ensuing jet leads to bubble collapse. However, 
only the former case is relevant here and it is indeed observed. It should be noted, that 
the size and velocity of the jets observed throughout this study are smaller and appear 
later than in Blake & Gibson (1981) and in Blake, Taib & Doherty (1986). This is 
because in their case the Kelvin impulse is always towards the cavity, whereas here it 
oscillates following the volume oscillations of each compressible bubble. 

Further decrease of the radii ratio R to 0.5, and keeping e = 0.3 and D = 4, decreases 
the average acceleration of the two bubbles to 0.16 and 1.0 for the left and right bubble, 
respectively. Bo = 0.25 for the right bubble and the ratio (g, ) / (g, )  = 0.16 is quite 
close to the ratio V,/V, = 0.125 of the two volumes. Therefore, to an outside observer 
the smaller bubble will appear to accelerate almost ten times faster than the larger one. 
As can be seen from figure 12 it is the smaller bubble that exhibits rapid shape 
oscillations and global deformation, in contrast to the case with R = 0.7 when it was 
the left bubble. This is because now the acceleration of both bubbles is below the 
threshold and both may exhibit globally deformed shapes. However, the higher 
frequency of the zeroth mode of the smaller right bubble leads to faster interaction with 
its harmonics. In particular, the required relation for subharmonic resonance holds for 
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the P, and P9 modes of the right bubble w 153.2, wg z 70.9, and w9 w 83.9 when 
R, = 0.5; whereas wo: l  w 74.5, wl0 w 34.5 and wll w 39.5 when R, = 1). 

For all cases examined the Bond number of the smaller bubble is always found to 
be greater than that of the larger bubble. This indicates that the average acceleration 
of the left bubble, ( g , ) ,  decreases faster than R2 when R --f 0. In fact, the accelerations 
calculated during the beginning of the motion for D = 4, E = 0.3 and P, = 666.66 when 
R = 0.8, 0.7, 0.5, are: ( ( g l ) ,  ( g , ) )  = (1.47,2.8), (0.7, 1.8) and (0.16,1.0), respectively. 
These values show that ( g , )  decreases roughly like R2; whereas, ( g , )  decreases faster 
than R4. 

N .  A .  Pelekasis and J. A .  Tsamopoulos 

6. Bubbles of unequal size in an oscillatory pressure field. 
6.1. General characteristics 

In their study on acoustic cavitation Kornfeld & Suvorov (1944) argued, that it follows 
from the general theory of vibrations that the pulsations of a pair of bubbles must 
either coincide in phase or be in opposite phases. According to them, this should 
depend upon whether the size of these bubbles is on the same or different sides of the 
resonant size corresponding to the forcing frequency. Consequently in the context of 
Bjerknes forces one obtains that, if the forcing frequency lies in the interval between 
the two eigenfrequencies for volume oscillations, the two bubbles repel each other, 
whereas the forces between the two bubbles are attractive in any other case. In the 
following we will verify this behaviour and see how it is coupled with the effects 
described earlier. To this end, we compute the response of two bubbles to an oscillatory 
acoustic pressure for a wide range of forcing frequencies. 

Introducing an oscillatory pressure change at infinity adds one more timescale in the 
volume oscillations of both bubbles and increases the possibilities for resonance. 
Nevertheless, as can be seen from table 1 in Part 1 and (3.1) and (3.2) here, when 
P, = 666.66 the frequency of the first ten Legendre modes is much smaller than the 
natural frequency for volume oscillations. Consequently, when of < oo, 1, oo, the time 
needed for one of these modes to grow through subharmonic resonance with the 
acoustic pressure is much larger than the time needed for the breathing modes to excite 
them. On the other hand, when the forcing frequency significantly exceeds the natural 
frequency of either bubble (wf > wo, 1, wo, ,.) subharmonic resonance between the forcing 
and one of the higher Legendre modes, Pk, k 2 15, is possible and is indeed found. 

6.2. Effect of varying the forcing frequency 
Two different values of the radii ratio were used; R = 0.5,0.7. Results obtained with 
R = 0.7 only are presented here; those obtained with R = 0.5 along with more details 
are given in Pelekasis (1991). The dimensionless static pressure is set to 666.66, the 
dimensionless initial distance between the two centres of mass D = 4, and the 
amplitude of the acoustic pressure E = 0.3 for all cases, unless otherwise indicated. 

First, values of of are examined that are smaller than either of the breathing mode 
frequencies. Taking of = 3.5, the volume of the left bubble is oscillating with a period 
of 0.08 and slowly increasing amplitude. The volume of the right bubble is also slowly 
increasing while it is oscillating with a period of 0.05 and amplitude slowly increasing 
in time, Pelekasis (1991). The values of the individual periods deviate slightly from 
those calculated using linear theory, but follow the Rf dependence stated in $3. The 
total energy is oscillating with the same frequency as the far-field pressure. Owing to 
the appearance of the shape instability on the left bubble computations proceed for 
only half a period of the acoustic pressure. Figure 13 shows the motion of the centres 
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FIGURE 14. Variation with time of the volume of (a) the left and (b) the right bubble; R = 0.7, 
D = 4, P, = 666.66, e = 0.3 and of = 40. 

of mass of the two bubbles for both a step change in pressure (wf = 0) and for 
wf = 3.5. In the latter case the acceleration of the two bubbles is smaller, hence the time 
needed for shape oscillations to arise is larger, see Pelekasis (1991). This is attributed 
to the fact that when the energy is varying in the far field the available energy in the 
system oscillates as well. Consequently any long-time effect that is about to evolve in 
one direction during the first half of the period of the external forcing is reversed in the 
second half, thus generating a weaker net effect than in the case of a step change. It is 
also interesting to note that the forcing frequency is very close to the linear frequency 
of 4. However, harmonic resonance does not have enough time to evolve. 

Increasing wf to 40, which is roughly half the natural frequency of the left bubble, 
changes the picture significantly. The total energy of the system follows (2.4) very 
closely and is still oscillating with the frequency of the forcing but this time with 
increasing amplitude, see Pelekasis (1991). Similarly the amplitude of the volume 
oscillations of the left bubble increases significantly owing to superharmonic resonance 
between the forcing and the breathing mode, figure 14. These large vibrations of the 
left bubble force the right bubble to accelerate faster and spherical-cap shapes appear 
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FIGURE 15. Bubbles shapes obtained up to breakdown of computations with R = 0.7, D = 4, 
P, = 666.66, E = 0.3 and w, = 40, at (a) t = 0.28, (b) t = 0.29, (c) t = 0.30 and (d )  t = 0.32. 
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FIGURE 16. Variation with time of the centres of mass of (a) the left and (b )  the right bubble under 
conditions of resonance between the forcing frequency and the breathing mode of the left bubble; 
R = 0.7, D = 4, P, = 666.66, 8 = 0.3 and m, = 73.5. 

before even the left bubble exhibits any significant deformation, figure 15. Decreasing 
E to 0.2 postpones the appearance of such shapes until t = 0.519(x 0.32e), which 
conforms with the O( 1 /e) scaling for the effect of acceleration found in Part 1. 

The evolution of the centres of mass of the two bubbles when wf is set to be the same 
as the linear frequency of the breathing mode of the left bubble, 73.5, is different. 
Under these near-resonance conditions, it is not clear whether attractive or repulsive 
forces will prevail. Indeed, initially the two centres of mass are seen in figure 16 to 
oscillate intensively around their position at t = 0 without exhibiting any net 
displacement. However, they eventually accelerate very fast towards each other owing 
to the presence of a very small yet important detuning between the forcing frequency 
and the zeroth frequency of the left bubble. The volume of the left bubble expands and 
then shrinks very rapidly, whereas its shape remains pretty much spherical. As an 
indication of the criticality of the situation and the intense oscillation of the centre of 
mass of the right bubble, it initially tends to form spherical-cap shapes on the side away 
from the (x,y)-plane, but when the motion is reversed it starts deforming on the other 
side as well, see figure 17. 
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FIGURE 18. Variation with time of centre of mass of (a) the left and (b) the right bubble; R = 0.7, 
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FIGURE 19. Bubble shapes obtained up to breakdown of computations with R = 0.7, D = 4, 
P,=666.66,e=0.3andw,=90,at(u)t=0.14,(b)t=0.17,(c)t=0.19and(d) t=0 .21 .  

With wf between the breathing frequencies of each bubble, a repulsive force should 
develop. Indeed, increasing wf to 90 makes the two bubbles repel each other, as can be 
seen from figure 18. The amplitude of the volume oscillations of the left bubble is still 
large and the right bubble exhibits spherical-cap shapes. Of course, now that the 
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FIGURE 20. Bubble shapes obtained up to breakdown of computations with R = 0.7, D = 4, 
P, = 666.66, 8 = 0.3 and uf = 111.7, at (a) t = 0.175, (b) t = 0.185, (c)  r = 0.190 and (d )  t = 0.200. 

acceleration is in the opposite direction from before, deformations appear on the side 
closer to the (x,y)-plane, figure 19. 

Increasing wf further may cause resonance between the forcing and breathing mode 
of the right bubble. This should happen when wf = 11 1.7. After an initial stage of 
intense oscillatory motion the centres of mass of the two bubbles eventually move away 
from each other, see Pelekasis (1991). Computations fail owing to the severe volume 
oscillations of the right bubble. The left bubble does not deform significantly, while the 
right one is dominated by the P, and P3 modes, figure 20. Comparing the two cases in 
which direct resonance of the left or right bubble should be expected (figure 17 us. 
figure 20) we find that in both cases the smaller bubble accelerates and deforms the 
most, whereas the bubble in direct resonance with wf exhibits the largest volume 
oscillations. The slight detuning caused by nonlinearities in the first case results in 
attractive forces and in the second case in repulsive forces. 

Moving away from the interval between the natural frequencies of the two breathing 
modes, allows the attractive forces between the two bubbles to prevail again. By setting 
wf = 180 both bubbles stop exhibiting violent volume oscillations and the right bubble 
assumes globally deformed shapes. In fact it turns out that the linear frequencies of P13 
and I& for R, = 0.7, as given by (3.1), are 85 and 95 respectively. This indicates the 
possibility of subharmonic resonance between the forcing and the above modes. 
Indeed, the right bubble is gradually developing 13 lumps, as can be seen from figure 
21. This signals the onset of shape oscillations and decomposition of the shape of the 
right bubble in spherical harmonics gives c5 as the dominant higher mode. Counting 
the distance between the peaks in the oscillations of cI5 we find that towards the end 
of the computations the period of its variation is roughly 0.0665 which is approximately 
twice the period of the forcing, 27c/wf = 0.035. Subharmonic resonance between the 
breathing mode of the left bubble and P,, P,, and P,, is also possible, but it does not 
have time to evolve since the period of these modes is larger than the period of the 
modes resonating with the acoustic field. Variation with time of the most important 
Legendre modes is given in Pelekasis (1991). Repeating the computation with E = 0.2 
gives rise to the same effect at time t = 0.95, which is in accord with the O(l/e) 
behaviour predicted by Hall & Seminara and verified numerically in Part 1. 

A number of very interesting experimental observations have been reported by Crum 
& Nordling (1972). They produced transient cavities by applying an acoustic stationary 
wave of very large amplitude (e = 4) and frequency 55 kHz. They observed very rapidly 
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FIGURE 21. Bubble shapes obtained up to breakdown of computations with R = 0.7, D = 4, 
P, = 666.66, E = 0.3 and w, = 180, at (a) t = 0.59 and (b) t = 0.62. 

deforming bubbles of velocity up to 1 m/s and lifetimes up to 10ms under a 
strobelight. The accelerating bubbles were annihilated upon reaching their maximum 
velocity and formed smaller ones that would either break up again or move as a group. 
We believe that our calculations predict the same behaviour. Namely, after some time 
the accelerating bubbles develop a hydrodynamic instability that breaks them up 
exponentially fast. Although bubbles in these experiments achieve greater accelerations 
than in our calculations (the primary Bjerknes force is greater than the secondary one, 
Crwn 1974) a qualitative agreement with the above data is readily obtained. The forced 
oscillations in figure 21 correspond to 07 = 5 1 kHz. Hydrodynamic instability arises in 
the right bubble at t* = 2.5 ms. The average motion of the bubbles with the parameters 
given in figure 21 should not be too different from that reported in figure 9. In this 
fashion we find that just before instability occurs, the left and right bubble achieve 
velocities of 0.29 m/s and 0.51 m/s respectively. 

7. Concluding remarks 
The motion of two bubbles when a disturbance in the far-field pressure is applied in 

the form of an acoustic pressure field is examined here. The change in pressure induces 
volume oscillations of the two bubbles characterized by three timescales: the two 
individual periods of the linear volume oscillations of each bubble, the so-called 
breathing modes, and that of the forcing. At the same time the presence of the other 
bubble causes each bubble to accelerate in a slow timescale along their common axis 
of symmetry. This acceleration is known as the ‘ Bjerknes effect’ and, irrespective of the 
original disturbance, it induces a force on the left bubble for example, F,, which is very 
similar to that given by Newton’s law of universal attraction, 

(7.1) 4 - V,(g,> - V , ( K P ) -  
In other words, is proportional to the mass (volume) of fluid displaced by the left 
bubble, V,, times the induced average acceleration, (g,). The latter is proportional to 
the volume of the fluid displaced by the right bubble, V,, and inversely proportional to 
D2. Moreover, (g6) ,  is proportional to e2, and depends on the relative size of the 
bubbles, R, and the phase difference in their volume oscillations. 
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FIGURE 22. Schematic of the dynamic behaviour of two oscillating bubbles for different ranges of 
the operating parameters, &ID, R and wr 

The wealth of observed phenomena can be better summarized by referring to figure 
22. For any ambient pressure, the linear results by Bjerknes are confined on the plane 
with e /D  = 0. When the dimensionless radii of the left and right bubbles are set at 1 
and R( < 1) respectively, their corresponding breathing-mode frequencies will remain 
constant and increase when R --f 0, see (3.2). Then, according to the linear result, bubble 
repulsion is possible only when o,,, I < or < wo, T .  The linear result is valid only for short 
times and increasing the amplitude of the disturbance pressure or decreasing the 
distance between bubbles increases bubble interaction. Thus, the ratio e /D is used in 
figure 22 as a measure of nonlinearity. In general, bubble acceleration and harmonic 
resonance are the two competing nonlinear effects. Given the rest of the parameters, 
intermediate but large enough values of the amplitude e induce resonance between 
either of the breathing modes, or the acoustic sound field and certain non-spherical 
Legendre modes. This can be harmonic or subharmonic. However, the former effect is 
not normally observed since it occurs on an O(l/e2) timescale. Subharmonic resonance 
occurs on an O(l/e) timescale and is commonly captured in experiments and 
calculations. It gives rise to bubble shapes that are deformed everywhere on their 
surface and are dominated by the resonating modes. We have called such shapes 
globally deformed. Between the two periodic motions associated with volume 
oscillations the one with the higher frequency is more likely to cause subharmonic 
resonance, since the time needed for this effect to develop is less when the period of the 
basic motion is smaller. 

Increasing e further increases the relative importance of acceleration of the centre of 
mass, as compared with subharmonic resonance, until at some point a critical range of 
the average acceleration is exceeded. This is schematically indicated by the surface 
located at ( e l l ) ) ,  in figure 22. The corresponding critical Bond numbers have been 
reported for various conditions. Then, the stronger convection modifies the shapes 
obtained, which now resemble spherical-cap shapes. They occur on an O( l/e) timescale 
as well. 
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Further increase of e to significantly larger values, on the order of 0.8, generates a 
subharmonic signal in the oscillations of Po at half the frequency of the breathing mode. 
The shape of both bubbles is dominated by 4, whereas significant volume growth is 
observed followed by rapid collapse. This behaviour is called transient cavitation and 
is often observed in cavitation experiments (Neppiras 1969). It should be noted that in 
the present study this effect is only observed when the forcing frequency is non-zero but 
below the frequency of the breathing mode of both bubbles. 

For bubbles of unequal size, in addition to the previously mentioned effects, the 
direction of acceleration changes depending on the frequency of the pressure variation 
at infinity. More specifically, if wf lies in the interval defined by the frequencies of the 
breathing modes of the two bubbles, repulsion of the two centres of mass is observed. 
Otherwise, the two bubbles always attract each other, and more effectively when 
wf = 0. The domain where repulsion occurs is well characterized in the plane E / D  = 0. 
Nevertheless, as s / D  or time increases its boundaries will be affected, since inertia will 
decrease the eigenfrequency of both breathing modes. The dependence of these 
frequencies on D may have an even more dramatic effect. For example, two bubbles 
with D = 5 ,  R = 0.7 and P, = 666.66 would attract each other if wf = 115, since then 
oo, x 74 < wo, x 110 c wr = 115 (Part 1). As they come closer together and provided 
they do not break up in the process, they may repel each other, since at D = 2.5 their 
eigenfrequencies would be oo,l x 72 < wf = 115 < w ~ , ~  z 120. As they repel, the 
relative magnitude of the frequencies may change again and so on. Such effects are seen 
in figures 16, 17 and 20. 

At this point it seems reasonable to re-evaluate our results in the context of relevant 
studies and compare the range of dimensionless quantities within which they occur. 
Spherical-cap shapes were originally observed in rising bubbles at high Reynolds 
numbers, Davies & Taylor (1950). Several common features of the accelerating motion 
studied here and that of rising bubbles motivate our belief that such shapes are 
produced by a similar mechanism. In particular, in the case of bubbles rising in low- 
viscosity fluids, Re 2 200, a critical Weber number exists, We % 1.2, beyond which 
steadily rising and spherical bubbles are not observed, Hartunian & Sears (1957). The 
motion of their centre of mass becomes ‘zig-zag’ or spiral instead of rectilinear. The 
above investigators, as well as Saffman (1956), primarily attribute this transition to an 
instability ‘triggered’ by the interaction between surface tension and inertia forces in 
the direction of acceleration. Saffman also suggests that this instability, subsequently, 
initiates an oscillation of the wake of the bubble which establishes the oscillatory 
trajectory. At even larger Re and We the motion becomes rectilinear again and finally 
spherical-cap shapes appear with a very irregular and rapidly fluctuating shape on their 
lower surface; Saffman (1956) and Hartunian & Sears (1957). 

In the present formulation three-dimensional disturbances are not allowed, hence 
zig-zag or spiral motions cannot be captured. However, spherical-cap shapes are 
observed with the side facing away from the direction of acceleration significantly 
deformed and oscillating on its own right, see also Part 1. They occur when the Bond 
number, based on the average acceleration, becomes larger than 1.5 when P, = 666.66. 
As was pointed out before, this is also due to the domination of inertia over surface 
tension forces. Examination of table 5.7 in Pelekasis (1991) or figure 9 in Part 1 shows 
that when D = 4, R = 1, P, = 666.66 and e = 0.2, then Bo = ( g )  = 1.8 and spherical- 
cap shapes appear at t x: 1.0. Considering that the average acceleration does not 
change significantly with time, a good estimate for the average dimensionless 
rectilinear velocity of a bubble is 2, when transition occurs. This value has been verified 
by direct calculations also. Given our definition of dimensionless quantities, the 
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dimensionless velocity coincides with the Weber number for the rectilinear motion of 
the bubbles. When the material properties of distilled water are used, the static pressure 
P, = 666.66 gives a bubble radius of 1 mm and the value for the critical We obtained 
above corresponds to a linear velocity of 53.8 cm/s and to a critical Re of 1076. 

These values should be compared with the ones given by Hartunian & Sears for the 
onset of instability in rising air bubbles in distilled water under atmospheric pressure. 
The critical values that they reported are Re = 670, We = 1.22 and a terminal velocity 
u = 35.5 cm/s for bubbles of radius 0.085 cm. Clearly, both instabilities occur within 
the same parameter range and are associated with the same type of force balance. The 
critical velocity is overpredicted here, which should be expected since it signals the 
appearance of spherical-cap shapes that occur for higher Re and We than the zig-zag 
or spiral motion. Furthermore, the extent of overprediction will be reduced when small 
viscous effects are included, in which case the rectilinear motion will be decelerated 
towards the late stages of motion. For very large values of Re and on a timescale 
O(Re+), which is much greater than the timescale within which most of the effects 
presented here occur, O(e-'), viscous forces will become large enough to balance inertia 
and induce a steady terminal velocity of both bubbles. 

Another phenomenon related to the problem studied here is that of the erratic 
motion of bubbles often observed in cavitation experiments (Kornfeld & Suvorov 
1944). The parametric excitation of shape oscillations in isolated bubbles was proposed 
by Benjamin & Strasberg (1958) as a cause of this type of motion. In their analysis Hall 
& Seminara (1980) argued that bubble translation might arise as a nonlinear effect 
following the growth of non-spherical modes, or through interaction of the bubble with 
an axisymmetric basic flow. According to the same analysis, however, bubble 
translation could arise at orders higher than the second, so that the growth rate of &, 
the mode associated with bubble translation, could increase from zero. In a recent 
study Benjamin & Ellis (1990) presented a more complete mechanism extending an idea 
first proposed by Saffman (1967). Namely, they assumed a form of the velocity 
potential and showed that a deformable bubble can propel itself in a perfect fluid as 
a result of nonlinear coupling of consecutive spherical Legendre modes (i.e. both n and 
n + 1 modes must be initially present). Consequently, oscillating bubbles may be 
propelled along erratic paths as a result of multiple interactions between consecutive 
spherical harmonics, excited by an acoustic field through harmonic or subharmonic 
resonance. Furthermore, they argued that chaotic motion may also arise as a result of 
mode interactions with disturbances along the path of the bubble. 

The present work shows how bubble interactions will induce and alter the 
translation and acceleration of a bubble and give rise to such a velocity potential. 
Moreover, it is shown that translation may be stronger than that merely attributed to 
mode coupling and that a variety of instabilities may arise leading to breakup or 
coalescence. All these effects have been reported by Kornfeld & Suvorov (1944), but 
they cannot be predicted by assuming a form of the velocity potential. Finally, in view 
of the large accelerations experienced by a bubble in the presence of a larger one, one 
can imagine that in a suspension of bubbles their interactions will have a very 
important effect on the intensity and direction of their motion. 
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